Investigation on Instability of Rayleigh-Benard Convection Using Lattice Boltzmann Method with a Modified Boundary Condition
Authors
Abstract:
In this study, the effects of Prandtl number on the primary and secondary instability of the Rayleigh-Benard convection problem has been investigated using the lattice Boltzmann method. Two different cases as Pr=5.8 and 0.7 representing the fluid in liquid and gas conditions are examined. A body forces scheme of the lattice Boltzmann method was presented. Two types of boundary conditions in the presence of body forces are analyzed by the moment method and applied to a Poiseuille flow. Characteristic velocity was set in such a way that the compressibility effects are negligible. The calculations show that the increment of Prandtl number from 0.7 to 5.8 causes to create a secondary instability and onset of the oscillation in the flow field. Results show that at Pr=5.8, when the Rayleigh number is increased, a periodic solution appeared at Ra=48,000. It is observed that the dimensionless frequency ratio for Ra= 105 with Pr=5.8 is around 0.0065. The maximum Nusselt number for Ra = 105 with Pr=5.8 are estimated to be 5.4942.
similar resources
A novel boundary condition for the simulation of the submerged bodies using lattice boltzmann method
In this study, we proposed a novel scheme for the implementation of the no-slip boundary condition in thelattice Boltzmann method (LBM) . In detail , we have substituted the classical bounce-back idea by the direct immersed boundary specification . In this way we construct the equilibrium density functions in such a way that it feels the no-slip boundaries . Therefore , in fact a kind of equili...
full textSimulation of Rayleigh-Bénard convection using lattice Boltzmann method
Rayleigh-Bénard convection is numerically simulated in twoand three-dimensions using a recently developed two-component lattice Boltzmann equation (LBE) method. The density field of the second component, which evolves according to the advection-diffusion equation of a passive-scalar, is used to simulate the temperature field. A body force proportional to the temperature is applied, and the syst...
full textA Comparative Solution of Natural Convection in an Open Cavity using Different Boundary Conditions via Lattice Boltzmann Method
A Lattice Boltzmann method is applied to demonstrate the comparison results of simulating natural convection in an open end cavity using different hydrodynamic and thermal boundary conditions. The Prandtl number in the present simulation is 0.71, Rayleigh numbers are 104,105 and 106 and viscosities are selected 0.02 and 0.05. On-Grid bounce-back method with first-order accuracy and non-slip met...
full texta novel boundary condition for the simulation of the submerged bodies using lattice boltzmann method
in this study, we proposed a novel scheme for the implementation of the no-slip boundary condition in thelattice boltzmann method (lbm) . in detail , we have substituted the classical bounce-back idea by the direct immersed boundary specification . in this way we construct the equilibrium density functions in such a way that it feels the no-slip boundaries . therefore , in fact a kind of equili...
full textImplementation of D3Q19 Lattice Boltzmann Method with a Curved Wall Boundary Condition for Simulation of Practical Flow Problems
In this paper, implementation of an extended form of a no-slip wall boundary condition is presented for the three-dimensional (3-D) lattice Boltzmann method (LBM) for solving the incompressible fluid flows with complex geometries. The boundary condition is based on the off-lattice scheme with a polynomial interpolation which is used to reconstruct the curved or irregular wall boundary on the ne...
full textA Simplified Curved Boundary Condition in Stationary/Moving Boundaries for the Lattice Boltzmann Method
Lattice Boltzmann method is one of computational fluid dynamic subdivisions. Despite complicated mathematics involved in its background, end simple relations dominate on it; so in comparison to the conventional computational fluid dynamic methods, simpler computer programs are needed. Due to its characteristics for parallel programming, this method is considered efficient for the simulation of ...
full textMy Resources
Journal title
volume 49 issue 2
pages 231- 239
publication date 2018-12-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023